

Protocol of data exchange with modem via USB interface
Version 2016.03.10

- Modem connects to USB-host as USB device of CDC class (virtual COM port in Windows, ttyUSB or

ttyACM in Linux)

- Because real RS-232 is not used in this interface, parameters of serial port, opening on the host

(baudrate, number of bits, parity, etc) may be anyone

- Data is in binary format

- «Network address» of modem is 0xff

- Multibyte numbers are transmitting starting from low byte (little endian format)

1. Reading last coordinates pack.
Format of request frame (from host to modem)

Offset Size (bytes) Type Description Value

0 1 uint8_t Address of modem 0xff

1 1 uint8_t Type of packet 0x03

2 2 uint16_t Code of data in packet 0x4100

4 2 uint16_t Access mode 0x0000

6 2 uint16_t CRC-16 (see appendix)

Format of answer frame (from modem to host)

Offset Size (bytes) Type Description Value

0 1 uint8_t Address of modem 0xff

1 1 uint8_t Type of packet 0x03

2 1 uint8_t Number of bytes of data transmitting 0x28

3 40 (0x28) 40 bytes Data structure (see lower)

43 2 uint16_t CRC-16 (see appendix)

Format of data field (40 bytes)

Offset Size (bytes) Description

0 36 (6*6) Six last coordinates structures received by modem (see lower)

36 4 Reserved

Format of coordinates structure (6 bytes)

Offset Size (bytes) Description

0 1 Address of device

1 2 Coordinate X, mm (int16_t)

3 2 Coordinate Y, mm (int16_t)

5 1 Byte of flags:

Bit 0: 1 – no relevant coordinates (red mode in dashboard)

Bit 1: 1 – temporary mobile beacon on frozen map (blue mode)

Bit 2: 1 – beacon is used for hedgehog positioning

2. Reading device height
Format of request frame (from host to modem)

Offset Size (bytes) Type Description Value

0 1 uint8_t Address of device 0x01…0x63

1 1 uint8_t Type of packet 0x03

2 2 uint16_t Code of data in packet 0x5002

4 2 uint16_t Access mode 0x0002

6 2 uint16_t CRC-16 (see appendix)

Format of answer frame (from modem to host)

Offset Size (bytes) Type Description Value

0 1 uint8_t Address of device 0x01…0x63

1 1 uint8_t Type of packet 0x03

2 1 uint8_t Number of bytes of data transmitting 0x1c

3 28 (0x1c) 28 bytes Data structure (see lower)

43 2 uint16_t CRC-16 (see appendix)

Format of data field (28 bytes)

Offset Size (bytes) Description

0 2 Coordinate Z, mm (int16_t)

2 26 Reserved

3. Reading/writing modem configuration.
3.1 Reading modem configuration.

Format of request frame (from host to modem)

Offset Size (bytes) Type Description Value

0 1 uint8_t Address of modem 0xff

1 1 uint8_t Type of packet 0x03

2 2 uint16_t Code of data in packet 0x5000

4 2 uint16_t Access mode 0x0000

6 2 uint16_t CRC-16 (see appendix)

Format of answer frame (from modem to host)

Offset Size (bytes) Type Description Value

0 1 uint8_t Address of modem 0xff

1 1 uint8_t Type of packet 0x03

2 1 uint8_t Number of bytes of data transmitting 0x20 (FW 4.27-)

0x30 (FW 4.28+)

3 0x20 (FW 4.27-)

0x30 (FW 4.28+)

structure Data structure (see section 3.3)

0x23 or

0x33

2 uint16_t CRC-16 (see appendix)

3.2 Writing modem configuration.

Warning! To write modem configuration you must read configuration, setup the data fields described in fol-

lowing section, and then write it. Do not change any other bytes in structure, this may degrade the work of

modem

Format of request frame (from host to modem)

Offset Size (bytes) Type Description Value

0 1 uint8_t Address of modem 0xff

1 1 uint8_t Type of packet 0x10

2 2 uint16_t Code of data in packet 0x5000

4 2 uint16_t Access mode 0x0000

6 1 uint8_t Number of bytes of data transmitting 0x20 (FW 4.27-)

0x30 (FW 4.28+)

7 0x20 (FW 4.27-)

0x30 (FW 4.28+)

structure Data structure (see section 3.3)

0x27 or

0x37

2 uint16_t CRC-16 (see appendix)

Format of answer frame (from modem to host)

Offset Size (bytes) Type Description Value

0 1 uint8_t Address of device 0xff

1 1 uint8_t Type of packet 0x10

2 2 uint16_t Code of data 0x5000

4 2 uint16_t reserved

6 2 uint16_t CRC-16 (see appendix)

3.3 Structure of modem configuration data.

Most fields of data structure are not explained. Do not change these fields! They are useful for adjustment

system from dashboard program, unauthorized changing may degrade the work of modem

Offset Size (bytes) Type Description

0 1 uint8_t Address of starting beacon for building map. Modem

begins building map from this beacon if it exist.

1 27 27 bytes Not explained

28 1 uint8_t Control flags:

Bit 0: 1 = map frozen (freeze map), 0 = map unfrozen

(unfreeze map)

Bit 1…4: not explained

Bit 5: 1 = mirror map (change works only when the map

is not frozen)

Bit 6: 1= power save mode (power save works only

when the map is frozen, set this flag in the same com-

mand when freezing map)

Bit 7: not explained

29 2 2 bytes Not explained

31 1 uint8_t N, determines maximum frequency of retrieving

hedgehog coordinates

F= 2^(N-1) Hz, N= 0…5

32 0x00 (FW 4.27-)

0x10 (FW 4.28+)

16 bytes or 0 bytes Not explained

Appendix 1. Calculating CRC-16.

For checksum the CRC-16 is used. Last two bytes of N-bytes frame are filled with CRC-16, applied to first (N-

2) bytes of frame. To check data you can apply CRC-16 to all frame of N bytes, the result value should be ze-

ro.

Below is the implementation of the algorithm in the 'C'.

typedef ushort ModbusCrc;// ushort – two bytes

typedef union {

 ushort w;

 struct{

 uchar lo;

 uchar hi;

 } b;

 uchar bs[2];

} Bytes;

static ModbusCrc modbusCalcCrc(const void *buf, ushort length)

{

 uchar *arr = (uchar *)buf;

 Bytes crc;

 crc.w = 0xffff;

 while(length--){

 char i;

 bool odd;

 crc.b.lo ^= *arr++;

 for(i = 0; i < 8; i++){

 odd = crc.w & 0x01;

 crc.w >>= 1;

 if(odd)

 crc.w ^= 0xa001;

 }

 }

 return (ModbusCrc)crc.w;

}

